Stability and periodicity in dynamic delay equations
نویسندگان
چکیده
منابع مشابه
Stability and periodicity in dynamic delay equations
Keywords: Delay dynamic equations Fixed point theory Lyapunov Periodic solutions Stability Time scales a b s t r a c t Let T be an arbitrary time scale that is unbounded above. By means of a variation of Lyapunov's method and contraction mapping principle this paper handles asymptotic stability of the zero solution of the completely delayed dynamic equations x ∆ (t) = −a(t)x(δ(t))δ ∆ (t). Moreo...
متن کاملPeriodicity in a System of Differential Equations with Finite Delay
The existence and uniqueness of a periodic solution of the system of differential equations d dt x(t) = A(t)x(t − ) are proved. In particular the Krasnoselskii’s fixed point theorem and the contraction mapping principle are used in the analysis. In addition, the notion of fundamental matrix solution coupled with Floquet theory is also employed.
متن کاملPeriodicity and Stability in Nonlinear Neutral Dynamic Equations with Infinite Delay on a Time Scale
Let T be a periodic time scale. We use a fixed point theorem due to Krasnoselskii to show that the nonlinear neutral dynamic equation with infinite delay x(t) = −a(t)x(t) + (Q(t, x(t− g(t))))) + ∫ t −∞ D (t, u) f (x(u)) ∆u, t ∈ T, has a periodic solution. Under a slightly more stringent inequality we show that the periodic solution is unique using the contraction mapping principle. Also, by the...
متن کاملPeriodicity and Stability in Neutral Nonlinear Dynamic Equations with Functional Delay on a Time Scale
Let T be a periodic time scale. We use a fixed point theorem due to Krasnosel’skĭı to show that the nonlinear neutral dynamic equation with delay x(t) = −a(t)x(t) + (Q(t, x(t), x(t− g(t))))) +G ` t, x(t), x(t− g(t)) ́ , t ∈ T, has a periodic solution. Under a slightly more stringent inequality we show that the periodic solution is unique using the contraction mapping principle. Also, by the aid ...
متن کاملDelay Dynamic Equations with Stability
The unification and extension of continuous calculus, discrete calculus, q-calculus, and indeed arbitrary real-number calculus to time-scale calculus, where a time scale is simply any nonempty closed set of real numbers, were first accomplished by Hilger in [4]. Since then, time-scale calculus has made steady inroads in explaining the interconnections that exist among the various calculuses, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2009
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2009.03.065